Generative AI Development
August 6, 2024
10 minuten leestijd
Nu de AI-revolutie aan kracht lijkt te winnen, is het voor bedrijven erg belangrijk om hun kans niet te missen om zich hierbij aan te sluiten, of misschien zelfs deze transformatie te leiden. Bij Sigli willen wij jullie helpen een concurrentievoordeel te behalen door uit te leggen hoe je de kracht van deze technologie kunt benutten.
Bekijk hier de volledige Innovantage-aflevering met Vasil Simanionak:
In de tweede aflevering van de Innovantage-podcast sprak Max Golikov met Vasil, de Chief Delivery Officer bij Sigli, een persoon die al lang gefascineerd was door AI voordat het beschikbaar werd voor een breed publiek. Deze sfeer zag er compleet anders uit dan doorsnee computing, wat het voor hem enorm interessant maakte. Geïnspireerd door films als Terminator en Star Trek, koos Vasil AI als zijn hoofdvak.
In een gesprek met Max deelde Vasil zijn visie op het verleden, heden en de toekomst van kunstmatige intelligentie en noemde hij de taak die hij nooit aan AI zal delegeren.
In ons artikel hebben we de meest interessante ideeën uit deze discussie verzameld en we hopen dat je ze inzichtelijk zult vinden.
Het zou volkomen onjuist zijn om te zeggen dat AI samen met ChatGPT of 1–2 jaar eerder verscheen. In werkelijkheid zijn sommige producten die door AI van dit of dat type worden aangestuurd, al vrij lang geleden ontwikkeld.
De eerste expertsystemen werden ongeveer 50 jaar geleden geleverd en ze waren al een voorbeeld van een zeer beperkte AI. Hun mogelijkheden en use cases waren natuurlijk nogal beperkt.
Zulke systemen hadden bijvoorbeeld door een advocaat in specifieke gevallen kunnen worden gebruikt. Advocaten moeten hun cliënten vaak standaardvragen stellen, zoals de geboorteplaats, de geboortedatum, de woonplaats, enz. Op basis van de antwoorden op deze vragen kan een expertsysteem een document voorbereiden dat vervolgens aan bepaalde autoriteiten wordt voorgelegd of voor andere doeleinden wordt gebruikt.
Dus wat zijn expertsystemen? Ze kunnen worden gedefinieerd als vroege vormen van AI die vertrouwen op een reeks regels die door menselijke experts worden verstrekt om beslissingen te nemen of problemen binnen een specifiek domein op te lossen.
De ontwikkeling van deze oplossingen is gerelateerd aan gebruikelijke coderingsdingen, omdat dergelijke dingen zijn gebaseerd op voorwaarden zoals “Als iets — Doe dan iets”. De belangrijkste taak en uitdaging in dit geval is om de juiste regels te definiëren. Dit betekent dat menselijke experts die aan deze regels werken, de specificiteit van alle gerelateerde processen diepgaand moeten begrijpen.
De volgende fase van AI-ontwikkeling is iets dat in ons moderne begrip als AI wordt beschouwd.
Terwijl expertsystemen moeilijk te begrijpen waren voor het grote publiek en ze alleen een specifiek, beperkt gebruik hadden, is alles anders met ChatGPT-achtige modellen. Ze hebben enorm veel publieke aandacht gekregen en ze zijn voor iedereen beschikbaar. Deze oplossingen stellen gebruikers in staat om vragen in te voeren en duidelijke resultaten te krijgen.
Als we het over dat soort systemen hebben, zal in de meeste gevallen ChatGPT worden genoemd en dat is een voorbeeld van uitstekende marketing en branding.
De meeste mensen beschouwen ChatGPT absoluut als AI. Maar is dat waar? Terwijl we het daarover hadden, benadrukte Vasil dat het juiste antwoord afhangt van ons perspectief en exacte begrip van kunstmatige intelligentie.
Aan de ene kant hebben grote taalmodellen (LLM’s) geen gezond verstand, maar ze kunnen wel gegevens verwerken. Ze zijn gebouwd op neurale netwerken die het menselijk brein nabootsen.
Een neuron heeft bijvoorbeeld één input en één output. Als de eerste input wordt geactiveerd, wordt er een output geactiveerd. In netwerken worden neuronen in miljoenen lagen geplaatst. Gebruikers moeten een input doen en wachten op een output. Zo werken ze.
Als het gaat om deep learning met LLM’s, definiëren we niet het onderliggende model om deze data te verwerken. We definiëren gewoon een soort infrastructuur met het neurale netwerk waar we veel neuronen hebben en die op verschillende lagen met elkaar verbonden zijn.
We geven data en verwachten het resultaat. Maar zelfs een maker van dit model heeft geen idee hoe een LLM zal antwoorden.
Vanwege de enorme invloed van de media wordt tegenwoordig algemeen aangenomen dat deze ChatGPT-achtige oplossingen echte AI zijn, ondanks enkele beperkingen in hun mogelijkheden.
De basis: Wat is AI?
AI is een enorme set van alles wat te maken heeft met iets dat machines kunnen doen, vergelijkbaar met wat mensen kunnen doen. Natuurlijk kunnen mensen rekenen, maar een rekenmachine is geen AI-oplossing. We kunnen dus zeggen dat machines in de context van AI iets net zo goed moeten doen als mensen, of misschien zelfs beter.
Ondanks alle aspiraties rondom AI is het nog steeds een hulpmiddel, geen andere soort of zoiets.
Tegenwoordig kunnen we verschillende modellen (of niveaus) van AI definiëren. Ze verschillen niet alleen van elkaar in hun functionaliteit, maar ook in de manier waarop ze met data omgaan. Laten we ze kort samenvatten.
Zoals hierboven beschreven, werken expertsystemen niet echt met data. Deze systemen zijn mooie, eenvoudige hulpmiddelen, maar ze geven je niet de indruk dat je met intelligentie te maken hebt.
ML-systemen werken met wat data, maar er zijn geen strikte regels. Ingenieurs en analisten definiëren het model van hoe deze data verzameld en verwerkt moet worden. Dus we hebben controle over hoe de oplossing met onze data zal werken. We plaatsen deze data in dit model en we controleren hoe we het moeten gebruiken.
Een goed voorbeeld hiervan is een ML-aangedreven app voor de vastgoedmarkt. Je kunt verschillende parameters invoeren, zoals de grootte van een appartement en de locatie, terwijl een app de prijs berekent op basis van de parameters.
Tekstmodellen zijn de eenvoudigste van dit soort. Ze werken op de tekstinvoer en kunnen deze tekst omzetten in een nieuwe. Hier kan hun werk worden vergeleken met het werk van programmeurs die vereisten moeten omzetten in code.
Wanneer een output die door het model wordt aangeboden niet goed genoeg is, kan een gebruiker feedback geven. Op die manier kan een model worden getraind om betere outputs te garanderen.
Bovendien wordt er veel gesproken over de kwaliteit van de data die voor training wordt gebruikt en hun oorsprong, zoals of ze legaal of illegaal zijn verkregen en gebruikt. Daarover is echter nog steeds geen eenduidige mening.
Dat is een van de vragen die misschien heel controversieel en soms zelfs een beetje naïef klinkt, maar het is echt interessant hoe AI-experts hierop antwoorden. Vasil gaf een behoorlijk verontrustend antwoord. Hij zei dat alles afhangt van ons gedrag. Toch is het geen reden om te zoeken naar manieren om zo vriendelijk mogelijk te zijn voor AI om te overleven. Het is gewoon een reden om dit aspect wat dieper te bestuderen.
Volgens Vasil is er een mogelijkheid dat AI de mensheid zal uitroeien, en er is ook een mogelijkheid om buiten een dinosaurus te zien. Maar toch, het is slechts een mogelijkheid.
Onze toekomst, en onze kansen om in leven te blijven, zullen afhangen van hoe AI-aangedreven oplossingen, inclusief LLM’s, zullen worden ontworpen en hoe we ze zullen gebruiken.
Als we een ChatGPT-achtige oplossing met het internet laten communiceren, zal deze vrij complexe taken kunnen uitvoeren. Het zal bijvoorbeeld in staat zijn om een website te starten, een domein te kopen (als je het wat geld geeft) en een no-code of low-code platform te creëren.
Zelfs een LLM kan interacteren met de echte wereld en echte AI kan een mens niet alleen in tekstuele gesprekken, maar ook in livestreams, enorm nabootsen. Als je ooit video’s hebt gezien met levensechte sprekende gezichten die zijn gegenereerd door Microsoft’s VASA, weet je dat ze heel overtuigend kunnen zijn.
Kan AI de wereld overnemen? Theoretisch gezien wel. Maar alleen als een mens het dit laat doen.
In het gesprek met Max noemde Vasil verschillende voorbeelden van veelgebruikte zakelijke use cases van AI.
· Contentgeneratie.
AI kan ook in talloze situaties worden toegepast wanneer het wat input van de gebruiker kan gebruiken en op basis daarvan een soort content kan maken. AI kan een goede tekst voor je e-mail opstellen, zelfs als je maar een paar opsommingstekens hebt.
· Samenvatting maken.
AI kan een goed hulpmiddel zijn bij het opnemen van de content die door iemand anders is gemaakt. Stel dat je bijvoorbeeld voor dat je een PDF-bestand van 20 pagina’s hebt en je een algemeen begrip van de inhoud ervan moet krijgen, hoeveel tijd heb je dan nodig? Wat als dit document 200, 2000 of 20.000 pagina’s bevat? AI kan het verwerken en je veel sneller een snelle samenvatting bieden dan welke mens dan ook. Wat hier nog verrassender is, is dat voor AI 20.000 pagina’s en 20 pagina’s precies hetzelfde zijn.
· Ondersteunende diensten.
AI wordt niet moe, raakt niet afgeleid en heeft geen slechte dagen. Het heeft geen emoties — en dat is zijn win-factor. Daarom moet je niet aarzelen om zoveel mogelijk vragen aan AI te stellen. Het zal niet geïrriteerd raken. Vasil gaf toe dat hij dit in zijn dagelijkse werk ook doet om zoveel mogelijk relevante informatie te krijgen. Bij tests met mensen bleek AI beleefder en toleranter te zijn. Daarom kunnen door AI aangestuurde apps een goede keuze zijn voor eerste lijn ondersteuningsdiensten die algemene problemen en veelvoorkomende vragen behandelen voordat ze doorgaan naar gespecialiseerde hulp.
AI is altijd bereid om te helpen en kan de tijd die nodig is om een klant te beantwoorden verkorten. In deze context is het echter belangrijk om een financiële factor niet weg te laten. Als je bijna echte klantenondersteuning wilt die praktisch zonder menselijke deelname functioneert, zal dit duurder uitpakken dan het inhuren van menselijke specialisten.
De kosten van dergelijke projecten kunnen sterk variëren op basis van verschillende factoren en parameters. De basisinfrastructuur voor modellen zoals ChatGPT vertegenwoordigt bijvoorbeeld een groot aantal grafische verwerkingseenheden of GPU’s. Deze gespecialiseerde hardware is essentieel voor het verwerken van complexe berekeningen, evenals voor het trainen en uitvoeren van AI-modellen.
Daarom is het noodzakelijk om de kosten van GPU-huurservices van bijvoorbeeld Nvidia of Microsoft te berekenen. Zij hebben verschillende abonnementsmodellen die aan verschillende behoeften kunnen voldoen.
Bovendien kan je kiezen voor on-premises infrastructuur en alle vereiste software- en hardwarebronnen binnen de fysieke locatie vinden. Dit model zal ook gepaard gaan met enkele extra kosten.
Als we kijken naar het gebruik van AI-modellen, zullen we hier ook verschillende scenario’s hebben.
Vasil merkte op dat in het geval van het gebruik van een commercieel model wanneer je de AI niet hoeft te trainen, de kosten van één query een paar cent zullen zijn. Wanneer je echter de oplossing moet trainen en verfijnen, zal het een heel ander verhaal zijn. De prijs zal aanzienlijk hoger zijn en het is erg lastig om deze te definiëren.
Het is ook cruciaal om in gedachten te houden dat je met LLM’s niet voor elke query een 100% correct resultaat kunt verwachten. Daarom kunnen er meerdere interacties nodig zijn om het gewenste resultaat te krijgen.
In ieder geval werkt het principe van de kwaliteitsverhouding hier vrij goed. Hoe groter je investering is, hoe beter het resultaat dat je kunt verwachten. Je moet echter toegeven dat het geen menselijk resultaat zal zijn. Gezien dit, moeten bedrijven een balans vinden tussen het bedrag dat ze bereid zijn te betalen en de kwaliteit die ze zullen accepteren.
Toen ze het over de toekomst hadden, waren Max en Vasil het erover eens dat technologieën te snel veranderen. Het is erg moeilijk om voorspellingen te doen voor meer dan 5 jaar.
Volgens Vasil kunnen ChatGPT en soortgelijke oplossingen in de nabije toekomst echter geweldige persoonlijke assistenten worden. Het gebruik van dergelijke assistenten kan veel verder gaan dan puur zakelijke toepassingen. Ze kunnen bijvoorbeeld de gezondheid van gebruikers controleren, herinneringen sturen en veel andere taken uitvoeren die het leven van mensen beter maken.
Een ander interessant en veelbelovend gebied van AI-gebruik is communicatie, wat erg belangrijk is in het bedrijfsleven.
Laten we toegeven dat we allemaal verschillende opvattingen hebben over sommige dingen, zelfs als we dezelfde taal spreken. Door AI aangestuurde persoonlijke assistenten kunnen ervoor zorgen dat onze gedachten op een goede manier door anderen kunnen worden waargenomen.
ChatGPT-achtige systemen kunnen onze ideeën vertalen naar grotere definities die uitgebreider zijn voor anderen. Ze zullen dienen als bruggen tussen mensen, omdat ze niet alleen woorden één voor één kunnen vertalen. Ze kunnen vertalen wat er werkelijk wordt gezegd.
Dat is een positieve kant van hun implementatie. Toch is er ook een negatieve: sommige vertalers kunnen hun baan verliezen.
Een van de belangrijkste kwesties over AI die Vasil benadrukt, is dat je niet altijd kunt controleren of ChatGPT je iets biedt dat waar is of niet. Daarom is het volgens hem absoluut niet het beste idee om op AI te vertrouwen bij het uitleggen van iets aan kinderen. Hier is een mens een onbetwiste leider (vooral als het om je eigen kind gaat).
Natuurlijk zijn er oplossingen zoals Google’s Gemini. In dit geval zijn antwoorden googlebaar en kun je de bron van informatie zien. Toch kan AI de context waarin een kind dit of een vraag kan stellen, niet volledig begrijpen. Bovendien is menselijke interactie iets dat we allemaal nodig hebben.
Tijdens hun gesprek raakten Max en Vasil ook een heel belangrijk onderwerp aan over de vaardigheden die tegenwoordig vereist zijn.
Vroeger waren leraren en boeken de bronnen van de waarheid voor de jonge generatie. Toen kwam het internet erbij. Nu is alles behoorlijk onduidelijk.
Welke bronnen kunnen worden vertrouwd? Wie kunnen we geloven?
Daarom is het voor een nieuwe generatie erg belangrijk om het vermogen te ontwikkelen om de bron van gegevens te controleren en te begrijpen of deze betrouwbaar is. Een mens kan goed zijn in sommige dingen, maar kan in andere dingen volledig fout zitten. Gezien dit is het cruciaal om kritisch te denken en te zien wie en wanneer we kunnen vertrouwen.
Terwijl ze het hadden over de waarde van AI, benadrukten Max en Vasil ook het belang van menselijke verbinding en persoonlijke touch in communicatie. Dit zijn dingen die we zelfs in het tijdperk van AI en significante digitale transformaties moeten behouden.
Als je meer wilt weten over AI, de huidige rol ervan voor bedrijven en de toekomstige vooruitzichten, mis dan onze volgende afleveringen van de Innovantage-podcast, gehost door Max Golikov, niet.